
International Journal of Computer Trends and Technology Volume 67 Issue 3,151-155, March 2019

ISSN: 2231-2803 / https://doi.org/10.14445/2231280453/IJCTT-V67I3P129 © 2019 Seventh Sense Research Group®

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Review Article

Analyzing Resource Allocation Strategies

with Elasticity in Multi-Tenant Cloud

Environment

 Amit Kumar Chaturvedi
1
, Praveen Sengar

2
, Kalpana Sharma

3

1,3

Assistant Prof., MCA Deptt, Govt. Engineering College, Ajmer, India
2
Ph.D. Scholar, CS Deptt., Bhagwant University, Ajmer

Abstract - Sharing the resources for maximizing the

uses and benefits is the basic idea behind cloud

computing. Providers share their resources like

networks, servers, storage, applications, and services

to the clients in a ubiquitous, convenient, and on-

demand way. Cloud is a multi-tenant environment

that supports a customizable and easily configurable

service model. SLA (Service Level Agreements) play a

vital role in binding clients and providing negotiable

and agreed rules and regulations. If anyone violates

these rules and regulations, they will also be

penalized. The concept of multi-tenancy increases the

use of cloud resources to an extent, but it also

increases the challenges of resource allocation

strategies. Various researchers propose resource

allocation strategies by taking different factors; one-

factor elasticity is common in resource allocation.

This paper will present a study of the resource

allocation strategies with elasticity in a multi-tenant

cloud environment. In this process, SLA is always at

the center to do the whole process of providing the

elasticity in resource allocation strategies.

Keywords - multi-tenant, elasticity, resource

allocation, SLA, QoS Virtual Machine.

I. INTRODUCTION

 According to the National Institute of Standards

and Technology (NIST), Cloud Computing is a model

that enables providers to share their computing

resources (e.g., networks, servers, storage,

applications, and services) and users to access them in

a ubiquitous, convenient and on-demand way with a

minimal management effort [11]. Cloud computing

offers a service model with IaaS, PaaS, and SaaS

layers. All the service layers are accessible to

multiple tenants through virtual machines. Using

configurable process models, such a multi-tenant

environment allows a cloud business process provider

to deliver a customizable process that different

tenants can configure according to their specific

needs [13]. Cloud computing infrastructures allow

creating a variable number of virtual machine

instances depending on the application demands. The

SaaS service layer provides flexibility in resource

allocation, i.e., scalability to scale up or down

application resources and pay for only what is used

by the user. Hence, the resources are used cost-

effectively with scalability in resource allocation.

Multi-tenancy means multiple tenants reside on the

same server simultaneously and share the resources

available at different service layers, i.e., IaaS, PaaS,

or SaaS, as cloud computing provides a configurable

process model that fulfills the isolated demand of

multiple tenants and configures the resources

accordingly with a minimum number of resources.

From the provider’s point of view at IaaS, it is

essential to measure the total resource requirement

(like processors, memory, OS configuration,

applications, etc.). Providing secure and isolated

access to the resources and maintaining the

confidentiality of data is the prime focus of the multi-

tenant environment. Elasticity is another key factor in

cloud computing, but there is not a standard metric or

procedure to quantify it, and it is rarely used. In this

paper, we will propose an elasticity metric that will be

general, flexible, simple, and easy to measure. This

elasticity metric allows providers and users to analyze

service elasticity enablers.

II. SERVICE LEVEL AGREEMENT

A service-level agreement (SLA) is a contract

between a service provider and its customer on what

services the provider will furnish. Maintaining a

negotiated SLA (throughput) is to minimize the

number of computational resources involved. The

underlying resource management policy is based on a

business model: each SLA violation leads to an

associated penalization, whereas scaling up the

computational resources involved has an associated

cost. Therefore, the overall goal of the SLA is to

maximize the utilization of the resources efficiently

so that the client and/or service provider get the

maximum profit with minimum incurred cost of these

resources by having and maintaining them on their

site. Hence, getting maximum revenue by investing

less cost is also the goal of the SLA from the service

provider's point of view.

Amit Kumar Chaturvedi et al. / IJCTT, 67(3), 151-155, 2019

152

III. QOS PROVISIONING COMPONENT

 The Quality of Service (QoS) is a generic term

collectively used to assess the usefulness of any

system from the user's perspective. In computer

networks, QoS involves adding mechanisms to

control the network activity, such as transmission and

error rates, to assure certain service parameters. The

main goal of QoS provisioning is to achieve more

deterministic network behavior so that information

carried out by the network can be better delivered,

and network resources are better utilized.

In cloud computing, QoS provisioning means making

decisions about the allocation and redistribution of

resources based on monitoring buffers and resource

requirement requests by the tenants. The exceeding

data in the buffer leads to different trigger actions

based on occupancy thresholds: (1) dropping data

from the buffer, (2) allocating additional resources to

consume this additional data and (3) reallocation of

resources from other streams. When the traffic is

bursty, the requirement or demand of resources

cannot be predicted, and it is decided at runtime.

IV. RELATED WORK ON MULTI-TENANCY

 An important requirement for SaaS applications is

the support of multiple tenants. A tenant is a customer

that uses or provides a SaaS application. To exploit

economies of scale, i.e., allow SaaS providers to offer

the one SaaS application instance to multiple tenants,

a SaaS application must be multi-tenant aware

[3,12,13]. Multi-tenant aware means that each tenant

can interact with the application as if it were the only

user of the application. In particular, a tenant cannot

access or view another tenant's data [12]. In a SaaS

model, the multi-tenancy support can be applied to

four different software layers [14]: the application,

the middleware, the virtual machine (VM), and the

operating system layers. In a multi-tenancy-enabled

service environment, user requests from different

tenants are served concurrently by one or more hosted

application instances based on the shared hardware

and software infrastructure. There are generally two

kinds of multi-tenancy patterns [11,15]: multiple

instances and native multi-tenancy; the former

supports each tenant with its dedicated application

instance over shared hardware, operating system, or a

middleware server in a hosting environment, whereas

the latter can support all tenants by a single shared

application instance over various hosting resources.

The two kinds of multi-tenancy patterns scale quite

differently regarding the number of tenants they can

support. Multi-instance is adopted to support a small

number to hundreds of tenants. At the same time,

native multi-tenancy is used to support a much larger

number of tenants, usually in the hundreds or even

thousands. It is interesting to note that the isolation

level among tenants decreases as the scalability level

increases [15].

In [16], the authors present a framework to deal with

the issues of native multi-tenancy for SaaS

applications. In [15], the challenges of SaaS

applications for application vendors and providers are

discussed, taking into account the need for

customization of SaaS applications [17]. The

traditional technique for implementing multi-tenancy

is to add a tenant ID column to each table and share

tables among tenants [13,18]. Another work is

presented in [19], where the M-store system is

proposed and developed, which provides storage and

indexing services for a multi-tenant database system.

These techniques create an isolated environment for

tenants by separating one tenant's context from

another. This tenant context isolation can be

implemented from the data layer to execute a specific

view.

The basic idea of using JVM instrumentation is to

start an agent listener when JVM initiates and then

intercept values or fields annotated as tenant-aware

(called isolation points) and load them according to

the tenant's configuration. Two crucial problems:

efficient VM image management and intelligent

resource mapping. VM image management includes

image preparation and local image management of

physical resources. iVIC is a platform for academic

researchers to dynamically create customized virtual

computing environments to launch scientific

computing, simulations, and analysis by leveraging

VM technology. In iVIC, common resources (e.g., a

set of workstations, PC servers, and small clusters)

are organized into a number of physical resource

pools. Each physical machine is treated as a VM

Container (VMC) responsible for providing VM

environments.

Each VMC exposes controlling and querying

interfaces to upper resource level managers via SOAP

interfaces. VM container interacting with SOAP

interfaces is the mechanism for monitoring and

measuring virtualized resources. The selected cloud

computing platform in this research, Eucalyptus,

offers SOAP interfaces and enables on-demand

deployment of VM instances.

In [1], a cloud computing mechanism is proposed as a

raw computational on-demand resource for a grid

middleware. The authors use Eucalyptus to manage

resources for a grid middleware implementation

called DIET-Solve in this work. In [2], the authors

describe three key components, effectively covering

''measurement, ''modeling'' and ''management'' (VM3)

of shared resource implications on individual virtual

machine performance. Authors also propose a

decomposition model that estimates the potential

performance loss when a virtual machine is

consolidated with other machines. Such a

decomposition model consists of three major

components: (a) virtualization overheads, (b) core

contention overheads, and (c) shared cache contention

Amit Kumar Chaturvedi et al. / IJCTT, 67(3), 151-155, 2019

153

overheads. A relevant commercial tool is Amazon

Auto Scaling [3]. It is a web service to automatically

launch or terminate Amazon EC2 instances based on

user-defined triggers. It allows applications to scale

up instances seamlessly and automatically when

demand spikes and automatically shed unneeded

instances when demand subsides. It uses proprietary

commands to create Auto Scaling Groups,

representing an application running on multiple

instances. However, this mechanism is a closed

proprietary mechanism that depends totally on the

Amazon EC2 platform. Second, it is based only on

resource utilization, but it does not consider the

nature of the applications. In this work, resource

utilization is compared against web applications'

performance (throughput) to determine whether or not

a virtual machine is saturated.

The problem of allocating cloud resources can be

seen as a bin packing problem. Quite often, bin

packing approximation algorithms are used for cloud

resource provisioning. The TDS (Tenant Defined

Storage) system aims to automatically allocate and

reallocate the storage resources required by the

different tenants. When a tenant user accesses the

multi-tenant application, he first connects to a load

balancer (1 in the figure) to select one of the available

server instances in a nearby data center (2). The

selected application server needs to connect to the

corresponding storage pool where the tenant's data is

stored (3). This storage pool should be close to the

application server, preferable within the same data

center. Both the application servers and storage pools

can be provisioned on the fly in an elastic cloud

environment. The management and provisioning of

these resources is the main task of the elasticity

manager (4). This component monitors and evaluates

the current load on the provisioned application server

instances to achieve high scalability. As the load

increases, additional instances will be provisioned to

avoid overload.

Similarly, the component also monitors the usage of

the provisioned storage pools. Suppose the usage of a

single storage pool reaches a certain threshold. An

additional storage pool is provisioned, and some of

the existing tenant data will be reallocated before the

storage pool runs out of space. On the other hand, if

the load on the application servers or the usage of the

storage pools decreases significantly, one or more

application servers and/or storage pools should be de-

provisioned, requiring the reallocation of some of the

tenants, to minimize the operating costs. Whenever

tenants are reallocated, the elasticity manager also

notifies the load balancer (5) to guarantee the correct

routing of incoming requests.

Fig. 1 General overview of the Tenant-Defined Storage system

Tenants are hierarchically organized using a tree

structure, which we refer to as the tenant tree. There

are several reasons to do so. First of all, multi-tenant

applications are often used by a number of

organizations the tenants. Large organizations,

however, tend to consist of multiple independent

divisions, introducing the need for subtenants or even

sub-subtenants, and the tenant tree inherently

supports this hierarchical structure. Secondly, when

the application tenants are geographically distributed,

it might be good practice to cluster them based on

their location, and resources can be allocated from a

resource pool close to the tenant. Tenants could also

be clustered based on other characteristics, e.g., the

selected SLA or other regulatory policies concerning

Amit Kumar Chaturvedi et al. / IJCTT, 67(3), 151-155, 2019

154

the storage of sensitive data, and these characteristics

could define the required type of (physical) hardware.

In general, tenants can be clustered based on multiple

characteristics, depending on the tenant's

requirements, the possibilities of the application, and

the infrastructure. The goal of the TDS system is to

cluster related tenants together while minimizing

migrations over time. In the resulting tenant tree, the

most significant characteristics appear at the highest

levels of the tree structure, as higher levels have a

higher impact on the clustering of tenants.

Following are the important factors for the

performance considerations of a clients job in a multi-

tenant execution environment in cloud computing :

A. Execution isolation

 In Cloud computing, multi-tenancy is a Cloud's

design for sharing the computing resources that are in

use among the different concurrent users. Isolation is

the capability of perceiving one shared environment

as dedicated and safe. Complete isolation among

applications executed in PaaS environments can be

achieved using multiple strategies19. Among them,

the following approaches are identified:

B. Virtual Multi-tenancy

 This approach relies on the isolation provided by

resource virtualization (VMs) and hypervisors in the

infrastructure management layer. Recently, these

approaches have evolved to use Container

technologies, although not yet widespread; Organic

Multi-tenancy: This approach is based on isolation

achieved at different PaaS component levels, such as

application servers and DBMS…

C. Security at multiple levels

 While Cloud computing offers a paradigm-shifting

technological solution for computational resources

and software, the concerns about privacy and

confidentiality of data still are a major concern for

adoption. It requires capabilities for underlying (data)

security and resilience of resources delivered in the

PaaS and IaaS multiple to enable users to uptake the

Cloud-based delivery model.

D. Compliance

 Public and Hybrid Cloud scenarios are

characterized by a constant data flow that cannot be

allocated to a particular place. This brings uncertainty

regarding the various data protection legislation,

which transcends national borders and complicates

compliance with the data protection legislation

worldwide. Enterprises or individuals using the PaaS

to develop applications that handle confidential and

private data need to safeguard their privacy.

Therefore, from a legal point of view, providing

mechanisms to enable data protection and privacy in

Cloud environments should be basic functionality.

V. RELATED WORK ON ELASTICITY

 Elasticity is the degree to which a system can

adapt to workload changes by provisioning and de-

provisioning resources autonomously. At each time,

the available resources match the current demand as

closely as possible. Again accuracy and time are

considered. Being θ the average time to switch from a

system configuration to another and μ is the average

percentage of under-provisioned resources during the

scaling process, the elasticity (el) is defined as:

 (1)

elasticity is, in this case, a metric measured in time

units−1 from 0 to 1 [14].

An elasticity metric is supposed to answer these two

questions: how often does the system violate its

requirements? And once these requirements are

violated, how long does it take before the system

recovers to a state in which requirements are met

again? in this work, two metrics are defined to answer

these questions, the number of slo (service level

objectives) violations per time unit (from 0 to 1) and

the meantime to quality repair or mttqr (in time units,

from 0 to 1) [15].

There has been some work on elasticity

measurement in cloud computing. In[14], elasticity is

the degree to which workload changes are adapted by

automatically provisioning and de-provisioning

resources so that available resources match the

current demand in time. In[16], elasticity for

customers is the ability to quickly request, receive,

and release as many resources as required. In[17],

elasticity is measured by mapping a user's request to

different resources. In[18], elasticity is defined

dynamically to meet the varying workload of

resources. [19], cost, quality, and available resources

are treated as three elasticity dimensions for elastic

cloud applications.

There are many approaches to predicting elasticity

and deciding when and how resources are scaled

in/out using heuristics and mathematical/analytical

techniques. In[14], the elasticity metric captures key

elasticity characteristics. In[11], execution platforms

and configuration points are proposed to reflect the

elasticity definition. In[1], elasticity benchmarking

approaches are outlined for special workload design

and implementation requirements. In[20], thread

pools are used as a kind of elastic resource for JVM,

and preliminary results of running a novel elasticity

benchmark reveal the elastic behavior of thread pool

resources.

Amit Kumar Chaturvedi et al. / IJCTT, 67(3), 151-155, 2019

155

VI. CONCLUSION

 Multi-tenancy extended the reach and efficiency in

resource utilization and offered cloud computing

services to potential clients. Elasticity is the key

factor in resource allocation under cloud computing.

The main concern during the allocation and

deallocation of resources is that there should be as

few situations of overutilization and underutilization

of resources to the client. This leads to improving the

economies of scale for the clients and service

providers. Saturation or overutilization occurs

whenever resource utilization gets above the point of

exhaustion. Resource underutilization occurs

whenever virtual machines are not using some

resources within a cloud computing infrastructure and

an application is executed. Resource underutilization

can be measured by the number of resources available

by potential virtual machines and applications. There

are multiple tools used to manage, measure, and

monitor the dynamic resource allocation in cloud

computing. These tools include the vsphere Web

Client and the vsphere Client New Virtual Machine

wizards and Virtual Machine Properties, editors.

The primary goal of the resource allocation system is

to determine a feasible allocation of tenant data over

the available resource pools. A feasible allocation

should aim to minimize the number of instances (bins)

to minimize the operational costs. Furthermore, the

number of migrations overtime should also be

minimized.

ACKNOWLEDGMENT

The authors are thankful to all directly or indirectly

for preparing this research paper, especially Dr. K. K.

Goyal, for his continuous support.

REFERENCES

[1] E. Caron, F. Desprez, D. Loureiro, Cloud computing

resource management through a grid middleware: a case

study with DIET and Eucalyptus, in IEEE International
Conference on Cloud Computing, 2009, pp. 151–154.

[2] R. Iyer, R. Illikkal, O. Tickoo, L. Zhao, P. Apparao, D.

Newell, VM3: measuring, modeling and managing VM
shared resources, The International Journal of Computer and

Telecommunications Networking (2009) 2873–2887.

[3] Amazon Web Services—auto-scaling. 2010.

http://aws.amazon.com/autoscaling/.
[4] C. Devlin, SaaS capacity planning: transaction cost analysis

revisited, MSDN Library, February 2008.

http://msdn.microsoft.com/en-us/library/cc261632. aspx.
[5] C. Isci, J. Kephart, L. Zhang, E. Bouillet, D. Pendarakis, X.

Meng, Efficient resource provisioning in compute clouds via

VM multiplexing, in: Proceeding of the 7th International
Conference on Autonomic Computing, June 2010.

[6] A.K. Mishra, J.L. Hellerstein, W. Cirne, C.R. Das, Towards

characterizing cloud backend workloads: insights from
Google compute clusters, SIGMETRICS Performance

Evaluation Review 37 (4) (2010).

[7] Apache Software Foundation, Apache JMeter, 2010.
http://jakarta.apache.org/ jmeter/usermanual/glossary.html.

[8] S. Wee, H. Liu, Client-side load balancer using the cloud, in

Proceedings of the 2010 ACM Symposium on Applied
Computing, March 2010.

[9] D. Dyachuk, R. Deters, A solution to resource

underutilization for web services hosted in the cloud, in

Proceedings of the Confederated International Conferences,

CoopIS, DOA, IS, and ODBASE 2009 on the Move to

Meaningful Internet Systems: Part I, November 2009.
[10] C. Matthews, Y. Coady, Virtualized recomposition: cloudy

or clear? In: Proceedings of the 2009 ICSE Workshop on

Software Engineering Challenges of Cloud Computing,
Washington, DC, USA, May 2009, pp. 38–43.

[11] Mell, P.M., et al.: The NIST definition of cloud computing
2011. (Technical report)

[12] Rosemann, M., van der Aalst, WMP: A configurable

reference modeling language. Inf. Syst. (2007)
[13] Aalst, W.: Business Process Configuration in The Cloud:

Support and Analyze Multi-Tenant Processes? In: ECOWS,

IEEE (2011) 3{10)
[14] S. Herbst, N. Kounev, R. Reussner, Elasticity in cloud

computing: What it is, and what it is not, in Proceedings of

the 10th International Conference on Autonomic Computing,
2013, pp. 23–27.

[15] M. Becker, S. Lehrigy, S. Becker, Systematically deriving

quality metrics for cloud computing systems, in Proceedings
of the 5th ACM/SPEC International Conference on

Performance Engineering, 2015.

[16] L. Badger, T. Grance, R. Patt-Corner, and J. Voas, Draft
Cloud Computing Synopsis and Recommendations, vol. 800,

NIST Special Publication, 2011.

[17] R. Cohen, Defining Elastic Computing, 2009,
http://www.elasticvapor.com/2009/09/defining-elastic-

computing.html.

[18] R. Buyya, J. Broberg, and A. M. Goscinski, Cloud
Computing: Principles and Paradigms, vol. 87, John Wiley

& Sons, New York, NY, USA, 2010.

[19] S. Dustdar, Y. Guo, B. Satzger, and H.-L. Truong,
―Principles of elastic processes,‖ IEEE Internet Computing,

vol. 15, no. 5, pp. 66–71, 2011.

[20] M. Kuperberg, N. Herbst, J. von Kistowski, and R. Reussner,
Defining and Quantifying Elasticity of Resources in Cloud

Computing and Scalable Platforms, KIT, Fakultat fur

Informatik, 2011.

